INTRODUCTION

FXT, Series 1500 and 3000 Cooling Towers should be rigged and assembled as outlined in this bulletin. These procedures should be thoroughly reviewed prior to the actual rigging and assembly of the equipment to acquaint all personnel with procedures to be followed and to assure that all necessary equipment will be available beforehand.

Be sure to have a copy of the certified drawing available for reference. If you do not have a copy of this drawing, or if you need additional information about this unit, contact your local BAC Representative whose name and telephone number are on a label adjacent to the access door. The model number and serial number of the unit are also located in this area.

Shipping
BAC Cooling Towers are factory assembled to assure uniform quality and minimum field assembly. For the dimensions and weights of a specific unit or section, refer to the certified drawings.

Table 1: Shipping

<table>
<thead>
<tr>
<th>Product Line</th>
<th>Models that ship in one section</th>
<th>Models that ship in two sections</th>
</tr>
</thead>
<tbody>
<tr>
<td>FXT</td>
<td>All single cells ship fully assembled FXT-6 thru FXT-257</td>
<td>All multi-cell FXT-230, 260 thru FXT-514</td>
</tr>
<tr>
<td>Series 1500</td>
<td>15146 thru 15177, 15201 and 15219</td>
<td>Due to shipping height restrictions 15200, 15227 thru 15282, and 15296 thru 15425</td>
</tr>
<tr>
<td>Series 3000</td>
<td>3240C thru 3672C and 3583C thru 3725C</td>
<td>Due to shipping height restrictions 3728C thru 31056C and 31132C thru 31301C</td>
</tr>
</tbody>
</table>
Check Unit Before Rigging
When the unit is delivered to the jobsite, it should be checked thoroughly to ensure all required items have been received and are free of any shipping damage prior to signing the bill of lading. The following parts should be inspected:
- Sheaves and Belts
- Bearings
- Bearing Supports
- Fan Motor(s)
- Fan(s) and Fan Shaft(s)
- Float Valve Assembly(s)
- Water Distribution System
- Hot Water Basin Integral Strainer (Series 1500)
- Fill
- Cold Water Basin Strainer(s)
- Interior Surfaces
- Exterior Surfaces
- Optional EASY CONNECT® Piping Arrangement (Series 3000)
- Louvers
- Air Inlet Screens or Combined Inlet Shields (when provided)
- Miscellaneous Items:
  All bolts, nuts, washers, and sealer tape required to assemble sections or component parts are furnished by BAC and shipped with the unit. A checklist inside the envelope attached to the side of the unit marked “Contractor’s Installation Instructions” indicates what miscellaneous parts are included with the shipment and where they are packed.

Unit Weights
Before rigging any unit, the weight of each section should be verified from the unit certified drawing. Some accessories add additional weight as shown on the respective accessory drawings.

WARNING: Before an actual lift is undertaken, ensure that no water, snow, ice, or debris has collected in the basin or elsewhere in the unit. Such accumulations will add substantially to the equipment’s lifting weight.

WARNING: In the event of extended lifts or where hazards exist, the lifting devices should be used in conjunction with safety slings placed under the unit.

Anchoring
7/8” diameter holes for Series 3000 and Series 1500, and 5/8” diameter holes for FXT Cooling Towers are provided in the bottom flange of the basin section for bolting the unit to the support beams. Refer to the suggested support location drawing included in the submittal for location and quantity of the mounting holes. The unit must be level for proper operation. Anchor bolts must be provided by others.

Safety
Adequate precautions appropriate for the installation and location of these products should be taken to safeguard the equipment and the premises from damage and the public from possible injury.

WARNING: When the fan speed of the unit is to be changed from the factory set speed, including the use of a variable speed device, steps must be taken to avoid operating at or near the fan’s “critical speed” which could result in fan failure and possible injury or damage. Consult with your local BAC Representative on any such applications.

WARNING: Only personnel qualified to do so should undertake operation, maintenance and repair of this equipment. Proper care, procedures and tools must be used in handling, lifting, installing, operating, maintaining and repairing this equipment to prevent personal injury and/or property damage.
Freeze Protection
These products must be protected by mechanical and operational methods against damage and/or reduced effec-
tiveness due to possible freeze-up. Please refer to the Product and Applications Handbook, Operation and
Maintenance Manual, or contact your local BAC Representative for recommended protection alternatives.

Location
All evaporative cooling equipment must be located to ensure an adequate supply of fresh air to the fans. When
units are located adjacent to walls or in enclosures, care must be taken to ensure the warm, saturated, discharge
air is not deflected and short-circuited back to the air intakes.

CAUTION: Each unit must be located and positioned to prevent the introduction of discharge air into the ventilation
systems of the building on which the unit is located and of adjacent buildings. For detailed recommendations on
BAC equipment layout, see our website at www.BaltimoreAircoil.com or contact your local BAC Representative.

Warranties
Please refer to the Limitation of Warranties applicable to and in effect at the time of the sale/purchase of these
products.

RIGGING
Refer to Table 2 and Figures 1 through 6 for the recommended minimum size of the spreader bar and the
recommended vertical dimension "H" from the lifting device at the base of each unit or section to the spreader bar.
In the event of extended lifts or where hazards exist, the lifting devices should be used in conjunction with safety
slings placed under the unit.

Table 2:

<table>
<thead>
<tr>
<th>Model Number</th>
<th>Dimensions (for each cell)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Section</td>
</tr>
<tr>
<td>FXT</td>
<td></td>
</tr>
<tr>
<td>6 to 47</td>
<td>1-Section</td>
</tr>
<tr>
<td>58 to 95</td>
<td>1-Section</td>
</tr>
<tr>
<td>115 to 257</td>
<td>1-Section</td>
</tr>
<tr>
<td>260 to 514</td>
<td>2-Section</td>
</tr>
<tr>
<td>15146 to 15177, 15201, 15219</td>
<td>1-Section</td>
</tr>
<tr>
<td>15296 to 15425</td>
<td>Upper Lower</td>
</tr>
<tr>
<td>15200, 15227 to 15282</td>
<td>Upper Lower</td>
</tr>
<tr>
<td>3240C to 3379C</td>
<td>1-Section</td>
</tr>
<tr>
<td>3412C to 3527C</td>
<td>1-Section</td>
</tr>
<tr>
<td>3473C to 3501C, 3552C, 3604C, 3648C, 3672C</td>
<td>1-Section</td>
</tr>
<tr>
<td>3583C, 3618C, 3676C, 3725C</td>
<td>1-Section</td>
</tr>
<tr>
<td>3728C to 3828C</td>
<td>Upper Lower</td>
</tr>
<tr>
<td>3872C to 3970C</td>
<td>Upper Lower</td>
</tr>
<tr>
<td>3985C to 31056C</td>
<td>Upper Lower</td>
</tr>
<tr>
<td>31132C</td>
<td>Upper Lower</td>
</tr>
<tr>
<td>31213C to 31301C</td>
<td>Upper Lower</td>
</tr>
</tbody>
</table>
Figure 1 shows the proper rigging of an FXT Cooling Tower for installation. FXT Cooling Towers may be hoisted short distances by using the lifting devices provided at the top of each unit as shown in Figure 2.
Figure 3 shows the proper rigging of one-section Series 1500 Cooling Towers, and Figure 4 shows the same for units that ship in two-sections.

Figure 3: One-Section Cells
Series 1500 Models 15146 to 15177, 15201, & 15219

Figure 4: Two-Section Cells
Series 1500 Models 15200, 15227 to 15425
Figure 5 shows the proper rigging of either a Series 3000 that ships in one-section or the top section of a Series 3000 that ships in two-sections. Figure 6 shows the proper rigging of the bottom section of a two-section unit.

![Figure 5: Series 3000 One-Section Cells or Upper Section for Two-Section Cells](image1)

![Figure 6: Series 3000 Bottom Section of Two-Section Cells](image2)

Notes: All single-cell and multi-cell units must be rigged one section at a time. All FXT-6 to FXT-257 Cooling Towers ship in one-section. Series 1500 Cooling Tower models 15146 to 15177, 15201, and 15219 ship in one-section per cell. Series 3000 Cooling Tower models 3240C to 3672C and 3583C to 3725C ship in one-section per cell. All other models ship in two-sections per cell.
SECTION ASSEMBLY

Series 1500 and Series 3000 Cooling Towers

To assemble a two-section unit, position the bottom section on the tower support and bolt in place. Install sealer tape on the mating flange of the bottom section to ensure an airtight seal between the top and bottom section. Using drift pins in the bolt holes provided, guide the top section onto the bottom section. Match marks must line up as shown in Figure 7a. Bolt in place as illustrated in Figure 7a, Detail “A”. Series 1500 towers use 5/16” self-tapping screws. Series 3000 towers use a 1/2” bolt and flat washer. In addition, a seal washer should be used under each nut to prevent water leakage.

Note: On multi-cell installations, for Series 1500, it is suggested that cells subsequent to the first, have the top and bottom sections assembled on the support foundation adjacent to the final mounting locations. This will allow space for securing the top and bottom sections of each cell. Slide the subsequent cell(s) to their final position using the lifting devices at the base of the cell(s). Refer to the “Assembly of Multiple-Cell Units” section for details. All multi-cell units have the cell number and “face” identified on each section as well as match marks to show how the cells are to be mated.

Note: On multi-cell installations for the Series 3000, position the bottom sections on the tower support and bolt in place. Install foam tape on the mating flanges of the bottom section to ensure an airtight seal between the top and bottom section. Using drift pins in the drift pin guides provided (shown in Figure 7b), guide the top section onto the bottom sections. Match marks must line up as shown in Figure 7a. Bolt the top section onto the bottom section at the alternate locations as shown in Figure 7a Detail, “A” and Figure 7c. Series 3000 towers use a 1/2” bolt and flat washer. In addition, a seal washer should be used under each nut to prevent water leakage.

Figure 7a: Upper and Lower Assembly for Series 1500 and Series 3000 Cooling Towers

Figure 7b: Upper and Lower Assembly for Series 3000 Cooling Towers - Alternate Bolting Location

Figure 7c: Alternate Bolting Channels

Note (1): 5/16” Self-Tapping Screws for Series 1500, 1/2” Bolt & Flat Washer for Series 3000
ASSEMBLY OF MULTI-CELL TOWERS

FXT Cooling Towers

Multi-cell FXT’s (Models FXT-230, 260, 272, 320, 350, 384, 432, 480, and 514) are furnished with a flume box to equalize the water level in the cold water basin of each cell.

1. Cell #1 will ship with the flume box factory installed. Position Cell #1 on tower support and bolt in place.

2. Wipe down the flanges on the end of the flume box. Apply a layer of 1/8” x 1” butyl sealer tape around the face of the flange over the centerline of the holes. Do not overlap or stretch too thinly at the corners. When it is necessary to splice the sealer, be sure to press the two ends together to form a smooth, continuous strip. Apply a second layer of sealer tape over the first layer following the same procedure. Refer to Figure 8.

3. Position Cell #2 on the tower supports and wipe down the surface adjacent to the opening to remove any dirt or moisture.

4. Using drift pins to assure alignment, draw Cell #2 tight against the flume box.

5. As illustrated in Figure 9, insert tappers in each hole and tighten.

Figure 8: Application of Sealer

Figure 9: Elevation View
**Series 1500 and Series 3000 Cooling Towers**

Refer to the unit certified print for the proper orientation of each cell. The cell number and “face” are stenciled on the outer basin wall. Multi-cell cooling tower installations may employ flume boxes to equalize the water level in the basin of each cell. Follow directions below for details on their installation.

### Series 1500 Flume Box Installation

1. Position Cell #1 on the unit support and bolt in place.
2. Wipe down the mating surface by the flume opening to remove any dirt or moisture that may have accumulated during shipment.
3. Wipe down the flanges on both ends of the flume box. On one end, apply a layer of 1/8” x 1” butyl sealer tape around the face of the flange over the centerline of the holes. Do not overlap or stretch too thinly at the corners. When it is necessary to splice the sealer, be sure to press the two ends together to form a smooth, continuous strip. Apply a second layer of sealer tape over the first layer following the same procedure. Refer to Figure 10.
4. Using drift pins to align the bolt holes, place the flume box over the opening in the basin of Cell #1 and fasten into place (Figure 11). Insert the 3/8” self-tapping screws or bolts from the flume box into the basin wall as illustrated in Figure 12.

*Note: Flume boxes furnished with units constructed with TriArmor™ Corrosion Protection System or stainless steel basins are assembled with stainless steel bolts, washers and nuts in lieu of self-tapping screws. Before installing the nuts, apply a lubricant to the bolts to reduce the potential for seizing.*

5. Apply sealer to the other end of the flume box as described in Step 3.
6. Position Cell #2 on the unit supports. Wipe down the mating surface by the flume opening to remove any dirt or moisture.
7. Using drift pins to assure alignment, draw Cell #2 tight against the flume box.

*Note: For cold water basins constructed with the TriArmor™ Corrosion Protection System, attach the vertical and horizontal backing plates as shown in Figure 12, Detail “A”.*
8. As illustrated in Figure 12, insert 3/8” self-tapping screws in each hole from the flume box into the basin wall and tighten.

Note: For units equipped with the positive closure plate option, skip step 8 and go to the positive closure plate section of this document.
Series 3000 Flume Box Installation

1. Position Cell #1 on the unit support and bolt in place.

2. Wipe down the surface adjacent to the flume opening of Cell #1 to remove any dirt or moisture that may have accumulated during shipment.

3. Wipe down the flanges on both ends of the flume box. On one end, apply a layer of 1/8" x 1" butyl sealer tape around the face of the flange over the centerline of the holes. Do not overlap or stretch too thinly at the corners. When it is necessary to splice the sealer, be sure to press the two ends together to form a smooth, continuous strip. Apply a second layer of sealer tape over the first layer following the same procedure. Refer to Figures 13.

4. Using drift pins to align the bolt holes, place the flume box over the opening in the basin of Cell #1 and fasten into place in Figure 14. Insert the 3/8" self-tapping screws or bolts in each hole from the flume box into the basin wall as illustrated in Figure 15.

5. Apply sealer to the other end of the flume box as described in Step 3.

6. Position Cell #2 on the unit supports. Wipe down the surface by the opening to remove any dirt or moisture.

7. Using drift pins to assure alignment, draw Cell #2 tight against the flume box.

**Note:** Flume boxes furnished with units constructed with TriArmor™ Corrosion Protection System or stainless steel basins are assembled with stainless steel bolts, washers and nuts in lieu of self-tapping screws. Before installing the nuts, apply a lubricant to the bolts to reduce the potential for seizing.

**Note:** For units equipped with the positive closure plate option, skip step 8 and go to the positive closure plate section of this document.

8. As illustrated in Figure 15, insert 3/8" self-tapping screws in each hole from the flume box into the basin wall and tighten.

**Note:** For cold water basins constructed with the TriArmor™ Corrosion Protection System, attach the vertical and horizontal backing plates as shown in Figure 15, Detail “A.”

![Figure 13](image-url)
POSITIVE CLOSURE PLATE OPTION

The optional Positive Closure Plate and gasket can be furnished on multi-cell units to allow individual cells to be isolated for cleaning and routine maintenance. FXT Cooling Towers will ship with the positive closure plate factory installed on Cell #1 as shown in Figure 16. For Series 1500 and 3000 Towers, the plate ships loose inside the cold water basin.

To install the Positive Closure Plate and gasket, follow the steps that correspond to your unit from the “Assembly of Multi-Cell Towers” section; then complete the installation of your specific type of unit using the instructions listed below.

FXT (Figure 16):
Units furnished with Positive Closure Plates will be installed using the steps in the previous section and Figure 16.

When tower operation does not require use of the Positive Closure Plate, remove the closure plate and gasket. Retighten the flume box using the wing nuts and flat washers.

![Diagram of Flume Box Installation on FXT](image_url)
Series 1500 and 3000 (Figures 17, 18):

1. Thread 3/8” self-tapping screws from the flume box into the basin wall with the positive closure plate as shown in Figure 18 or Figure 18, Detail “A” for cold water basins constructed with the TriArmor™ Corrosion Protection System.

2. Position the neoprene gasket and positive closure plate over the bolts and fasten in place with 3/8” wing nuts and flat washers.

3. When tower operation does not require use of the Positive Closure Plate, remove the closure plate and gasket. Retighten the flume box using the wing nuts and flat washers.
INSTALLATION OF FAN GUARD
Series 3000 Cooling Towers

Due to height limitations on truck shipments, the fan guard may ship unmounted. Models 3240C through 3379C have a one-piece fan guard. Models 31132C through 31301C have a four-piece fan guard. The supports for the fan guard should be joined as illustrated in Figure 19, Detail A before securing to the fan cylinder as illustrated in Figure 19, Detail B. The fan guards should be joined together and to the fan guard support as illustrated in Figure 19, Detail C before securing to the fan cylinder as illustrated in Figure 19, Detail D.

Fan guards for all other models are shipped in two halves. These halves should be bolted together using fan guard clamps, 3/8” bolts and lock nuts supplied with the unit. Then attach the guard to the unit as illustrated in Figure 19, Detail D. Fan guards must be securely in place before the Series 3000 Cooling Tower is placed in operation.

Note: FXT and Series 1500 Cooling Towers ship with the fan guard factory installed.

Warning: Ensure that the fan guard is properly installed prior to commencing operation.

INSTALLATION OF THE OPTIONAL SIDE OUTLET DEPRESSED SUMP BOX
Series 1500 and Series 3000 Cooling Towers

The optional side outlet depressed sump box allows a cooling tower water outlet connection to be piped from underneath the unit in four possible directions, 90° apart. The piping connection is a bolt circle designed to fit an ASME Class 150 flat flange with a full-face gasket.

To install the side outlet depressed sump box, follow the steps below:

1. Wipe the edges around the opening in the cold-water basin to remove any dirt or moisture that may have accumulated during shipment. Apply a layer of 1/8” x 1” butyl sealer tape around the opening in the basin over the centerline of the holes. Do not stretch the sealer too thinly or overlap at the corners. When it is necessary to splice the sealer, be sure to press the two ends together to form a smooth continuous strip. Apply a second layer of sealer tape over the first layer following the same procedure. Refer to Figure 20.
2. Insert the sump box assembly into the opening in the cold water basin and attach it to the basin with 3/8” x 1” bolt and nuts, flat washers, and lock washers as shown in Figure 20, Detail A.
3. Place the suction strainer over the opening.
4. For Series 1500 Cooling Towers, the side outlet depressed sump box may need to be attached from underneath the basin bottom. The sealer tape needs to be positioned between the sump box and the outside basin bottom.

**TOP INLET PIPING INSTALLATION**

Use the following drawings and notes when installing top inlet piping on FXT and Series 3000 Cooling Towers.

**FXT Cooling Towers (Figures 21 and 22)**

**NOTES:**
1. All piping must be supported external to the tower and restraint provided to ensure no vertical or horizontal movement of the inlet piping. All piping and supports are to be furnished by others, refer to the certified drawing for details on the tower connection size, etc.
2. Inlet piping should rest on the flow divider located 7/8 inch below the top of the water distribution box. The piping that enters the opening must be of proper size (see Detail “A”). Refer to the certified drawing for details on the tower connection size.
3. Flow control valves are recommended on multi-cell towers to ensure proper water distribution and are to be furnished by others.
4. If BAC vibration isolation rails are furnished, the tower piping must be independently supported, since no provision has been made for the weight of the piping in the selection of the rails.
5. For units installed on vibration isolation rails, flexible connections should be installed in the piping just before the tower perimeter.
Figure 21: Models FXT-6 through FXT-257

Figure 22: Models FXT-230 through FXT-514
Series 3000 Cooling Towers (Figures 23 and 24)

NOTES:
1. All piping shown by dashed lines is to be furnished by others. Refer to the certified unit print for details on the tower.
2. Field piping should be fabricated at the time of unit installation. Pre-fabrication of pipe work is not recommended.
3. Required static pumping head from base of cooling tower is indicated by static lift dimension and piping friction losses.
4. When tower is equipped with safety railing package, inlet piping should be designed to clear the railing. Adjust static lift as required.
5. For units installed on vibration isolation rails, flexible connections should be installed in the piping just before the tower perimeter.
6. All piping supports to be designed, furnished, and installed by others.

Single Riser (see Figure 23):
7. Supply piping to cooling tower inlet connections may be supported from the tower structure only at the pipe support locations shown. Piping must not be supported by the tower inlet connections. Piping outside the perimeter of the tower must not be supported from the tower.
8. Supply piping supports must be designed to rest on the walls of the hot water distribution basins at locations indicated [see Figure 25, Detail “A”].
9. Maximum diameter of inlet header piping that can be supported by the cooling tower distribution basins is 14 inches.
10. Provide adequate space between cooling tower and riser piping to allow for entry into the cooling tower access doors.

Dual Riser (see Figure 24):
11. Supply piping to the cooling tower inlet connections must not be supported from the tower.

TABLES: (For Figures 23, 24 and 25)

<table>
<thead>
<tr>
<th>Model Number</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>3240C, 3272C, 3299C</td>
<td>10'-6 3/4&quot;</td>
<td>4'-2 7/8&quot;</td>
<td>8'-8 1/4&quot;</td>
<td>8'-7 3/4&quot;</td>
</tr>
<tr>
<td>3333C, 3358C, 3379C</td>
<td>10'-6 3/4&quot;</td>
<td>4'-2 7/8&quot;</td>
<td>8'-8 1/4&quot;</td>
<td>9'-11 3/4&quot;</td>
</tr>
<tr>
<td>3412C, 3436C</td>
<td>12'-6 3/4&quot;</td>
<td>4'-10 5/8&quot;</td>
<td>9'-11 3/4&quot;</td>
<td>9'-11 3/4&quot;</td>
</tr>
<tr>
<td>3455C, 3482C, 3527C</td>
<td>12'-6 3/4&quot;</td>
<td>4'-10 5/8&quot;</td>
<td>9'-11 3/4&quot;</td>
<td>11'-3 3/4&quot;</td>
</tr>
<tr>
<td>3473C, 3501C</td>
<td>14'-0 3/4&quot;</td>
<td>5'-10 7/8&quot;</td>
<td>12'-0 1/4&quot;</td>
<td>9'-11 3/4&quot;</td>
</tr>
<tr>
<td>3552C, 3604C, 3648C, 3672C</td>
<td>14'-0 3/4&quot;</td>
<td>5'-10 7/8&quot;</td>
<td>12'-0 1/4&quot;</td>
<td>11'-3 3/4&quot;</td>
</tr>
<tr>
<td>3728C, 3781C, 3828C</td>
<td>14'-0 3/4&quot;</td>
<td>5'-10 7/8&quot;</td>
<td>12'-0 1/4&quot;</td>
<td>15'-5 1/2&quot;</td>
</tr>
<tr>
<td>3872C, 3923C, 3970C</td>
<td>14'-0 3/4&quot;</td>
<td>5'-10 7/8&quot;</td>
<td>12'-0 1/4&quot;</td>
<td>18'-1 1/2&quot;</td>
</tr>
<tr>
<td>3985C, 31056C</td>
<td>14'-0 3/4&quot;</td>
<td>5'-10 7/8&quot;</td>
<td>12'-0 1/4&quot;</td>
<td>20'-9 1/2&quot;</td>
</tr>
<tr>
<td>3583C, 3618C, 3676A, 3725A</td>
<td>16'-6 3/4&quot;</td>
<td>6'-11 9/16&quot;</td>
<td>14'-1 5/8&quot;</td>
<td>11'-3 3/4&quot;</td>
</tr>
<tr>
<td>31132A</td>
<td>16'-6 3/4&quot;</td>
<td>6'-11 9/16&quot;</td>
<td>14'-1 5/8&quot;</td>
<td>18'-1 1/2&quot;</td>
</tr>
<tr>
<td>31213A, 31301A</td>
<td>16'-6 3/4&quot;</td>
<td>6'-11 9/16&quot;</td>
<td>14'-1 5/8&quot;</td>
<td>20'-9 1/2&quot;</td>
</tr>
</tbody>
</table>

FLOW CONTROL VALVE

<table>
<thead>
<tr>
<th>SIZE</th>
<th>WIDTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>6&quot;</td>
<td>2 1/4&quot;</td>
</tr>
<tr>
<td>8&quot;</td>
<td>2 1/2&quot;</td>
</tr>
<tr>
<td>10&quot;</td>
<td>2 13/16&quot;</td>
</tr>
</tbody>
</table>

DRAWINGS:
Drawings shown are for multi-cell installations. For single cell installations, simply ignore the additional cell(s) and dimension “C” from the table above.
Figure 23: Series 3000 Single Riser Piping Schematic

Figure 24: Series 3000 Dual Riser Piping Schematic
MOTOR LOCATION AND CONDUIT INSTALLATION

Use the following drawings and notes when installing electrical conduit for towers supplied with the BALTIDRIVE® Power Train, ENERGY-MISER® Fan System, or gear drives. Notice the table for weight adds for two-speed motors and the ENERGY-MISER® Fan System.

Series 1500 Cooling Towers

CAUTION:
1. All conduit must be water tight and pitched downward to allow condensation to drain away from motor conduit box. Therefore, do not run the conduit through the fan deck.
2. All wiring must conform to local and national electrical codes. Junction box/safety switch and all conduit from fan motor conduit box to be sized, provided, and installed by others.
3. Rigid conduit outside casing panel must turn down to junction box.
4. On multi-cell units, use separate conduit lines for each fan motor. Run conduit through adjacent cells to junction box and/or disconnect switch on front/rear cell.

DRAWINGS:

Figure 25: Piping Drawing Details

Figure 26: Series 1500 Standard Motor and Optional ENERGY-MISER® Fan System Location
Figure 27: Series 1500 Standard Motor and Optional ENERGY-MISER® Fan System Location for Dual Fan Units

Figure 28: Series 1500 Motor Location for Independent Fan System

Series 3000 Cooling Towers

CAUTION:
1. Conduit must be water tight and pitched downward to allow condensation to drain away from fan motor conduit box. Therefore, do not run the conduit through fan deck.
2. All wiring must conform to local and national electrical codes. Junction box/safety switch and all conduit from fan motor conduit box to be sized, provided, and installed by others.
3. Rigid conduit outside casing panel must turn down to junction box.
4. On multi-cell units, use separate conduit lines for each fan motor. Run conduit through adjacent cells to junction box and/or disconnect switch on front/rear cell.

21
TABLES:

<table>
<thead>
<tr>
<th>Two-Speed Motor Weight Add</th>
<th>ENERGY-MISER® Motor Weight Add</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor Hp</td>
<td>Weight (lbs)</td>
</tr>
<tr>
<td>7.5</td>
<td>140</td>
</tr>
<tr>
<td>10</td>
<td>185</td>
</tr>
<tr>
<td>15</td>
<td>90</td>
</tr>
<tr>
<td>20</td>
<td>80</td>
</tr>
<tr>
<td>25</td>
<td>210</td>
</tr>
<tr>
<td>30</td>
<td>170</td>
</tr>
<tr>
<td>40</td>
<td>225</td>
</tr>
<tr>
<td>50</td>
<td>300</td>
</tr>
<tr>
<td>60</td>
<td>425</td>
</tr>
<tr>
<td>75</td>
<td>340</td>
</tr>
<tr>
<td>100*</td>
<td>600</td>
</tr>
</tbody>
</table>

* gear only

Weights given represent the additional weight when a 2-speed motor is ordered, and should be added to the standard unit weight.

DRAWINGS:

Drawings shown are for multi-cell installations. Please refer to the tables in each drawing for proper positioning.

Figure 29: Series 3000 Belt Drive Motor Location(s) for Models 3240C through 3725C
Figure 30: Series 3000 Belt Drive Motor Location(s) for Models 3728C through 31301C

Figure 31: Series 3000 Motor Location For Close-Coupled Gear Drive
External motor, mounting base and drive shaft must be field-installed. Drive shaft must also be properly aligned after installation by qualified personnel to ensure satisfactory operation.

**Figure 32: Series 3000 External Fan Motor Location for Gear Drive**

### OPTIONAL FACTORY PRE-WIRED TERMINAL BOX

#### Series 3000 Cooling Towers

BAC offers an optional terminal box with factory pre-wiring for Series 3000 Cooling Towers. When this option is ordered, the towers fan motor(s) and vibration cutout switch are wired at the factory (through flexible conduit and the mechanical equipment support) and terminated on the outside face of the BAC unit in a clearly marked, 304 Stainless Steel, NEMA 3R terminal box (see Figure 33 for the exterior location of the box on the tower).

The box includes a cover plate, which once removed reveals an easy-to-follow wiring diagram and modular terminal blocks. Remove the cover plate, and install the collar (ships loose in the tower’s basin) which has pre-punched conduit holes. Wiring from the terminal blocks to the unit controls is sized, provided and installed by others. After the controls are wired, reinstall the cover plate on the terminal box.

**OPTIONAL ACCESSORIES AND EQUIPMENT**

All optional accessories such as ladders, safety cages, and deck grating should be installed as shown on the appropriate reference drawing in the submittal package from Baltimore Aircoil Company. The appropriate access package reference drawing is included with the unit in the envelope attached to the side of the unit marked “Contractor Packet.”

**Figure 33**